Preprint / Version 1

3D Dark-field X-ray Microscopy Intra-granular Dislocation Mapping in L-PBF AISI 316L Coupled with Texture Analysis and Computed Tomography

Authors

  • Alessandro Tognan Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, Udine, 33100, Italy
  • Can Yildirim European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38043, France
  • Marco Pelegatti Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, Udine, 33100, Italy
  • Aditya Shukla European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38043, France
  • Emanuele Vaglio Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, Udine, 33100, Italy
  • Federico Scalzo Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, Udine, 33100, Italy
  • Enrico Salvati Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze 206, Udine, 33100, Italy

DOI:

https://doi.org/10.62679/f1jakb90

Keywords:

Dark field X-Ray Microscopy (DFXM), Laser Powder Bed Fusion (L-PBF), AISI 316L, Mosaicity, Dislocation Density

Abstract

Dislocations in Laser Powder Bed Fusion (L-PBF) AISI 316L closely relates to the material’s stress state, response and damage at the inter- and intra-granular scales. Assessing the dislocation state and activity at these scales helps understand the material behaviour at larger length-scales. Nevertheless, most experimental studies have utilised surface or destructive methods, unable to probe the bulk non-invasively. We conduct the first Dark-Field X-ray Microscopy (DFXM) investigation to non-destructively assess the intra-granular dislocation density within an L-PBF AISI 316L grain in the bulk. The research unveiled sub-granular cells with orientation spread up to 4°, and intra-granular dislocation arrangements, signalling Type III Residual Stress (RS) in the bulk. Additional texture analysis indicated a predominant {110} orientation within the grain. Computed tomography on a miniaturised sample (200x200 mm2 cross-section) enabled the statistical characterisation of its porosity. Pores were found close to the sample surface and geometrically regular, with sphericity mostly greater than 0.5.

References

[1] William E. Frazier. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 23(6):1917–1928, June 2014. doi: 10.1007/s11665-014-0958-z.

[2] Byron Blakey-Milner, Paul Gradl, Glen Snedden, Michael Brooks, Jean Pitot, Elena Lopez, Martin Leary, Filippo Berto, and Anton Du Plessis. Metal additive manufacturing in aerospace: A review. Materials & Design, 209:110008, November 2021. doi: 10.1016/j.matdes.2021.110008.

[3] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E.A. Jägle. Steels in additive manufacturing: A review of their microstructure and properties. Materials Science and Engineering: A, 772:138633, January 2020. doi: 10.1016/j.msea.2019.138633.

[4] Danilo D’Andrea. Additive Manufacturing of AISI 316L Stainless Steel: A Review. Metals, 13(8):1370, July 2023. doi: 10.3390/met13081370.

[5] Anton du Plessis, Ina Yadroitsava, and Igor Yadroitsev. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Materials & Design, 187:108385, February 2020. doi: 10.1016/j.matdes.2019.108385.

[6] Alessandro Tognan and Enrico Salvati. B-FADE: Bayesian-fatigue model estimator in Python and its application to the probabilistic estimation of El Haddad curves. Scientific Reports, 15(1):7106, February 2025. doi: 10.1038/s41598-024-82340-8.

[7] Emanuele Avoledo, Marco Petruzzi, Marco Pelegatti, Alessandro Tognan, Francesco De Bona, Michele Pressacco, Riccardo Toninato, and Enrico Salvati. Defect analysis by computed tomography in metallic materials: Optimisation, uncertainty quantification and classification. Precision Engineering, 97:235–248, 2026. doi: https://doi.org/10.1016/j.precisioneng.2025.09.008.

[8] Hongyu Chen, Dongdong Gu, Donghua Dai, Chenglong Ma, and Mujian Xia. Microstructure and composition homogeneity, tensile property, and underlying thermal physical mechanism of selective laser melting tool steel parts. Materials Science and Engineering: A, 682:279–289, January 2017. doi:10.1016/j.msea.2016.11.047.

[9] Nima Haghdadi, Majid Laleh, Maxwell Moyle, and Sophie Primig. Additive manufacturing of steels: a review of achievements and challenges. Journal of Materials Science, 56(1):64–107, January 2021. doi:10.1007/s10853-020-05109-0.

[10] Mustafa Güden, Hakan Yavaş, Ahmet Alptuğ Tanrıkulu, Alper Taşdemirci, Barış Akın, Samed Enser, Ayberk Karakuş, and Burcu Arslan Hamat. Orientation dependent tensile properties of a selective laser-melt 316L stainless steel. Materials Science and Engineering: A, 824:141808, September 2021. doi: 10.1016/j.msea.2021.141808.

[11] Yulia O. Kuzminova, Stanislav A. Evlashin, and Andrey N. Belyakov. On the texture and strength of a 316L steel processed by powder bed fusion. Materials Science and Engineering: A, 913:147026, October 2024. doi: 10.1016/j.msea.2024.147026.

[12] Jithin James Marattukalam, Dennis Karlsson, Victor Pacheco, Přemysl Beran, Urban Wiklund, Ulf Jansson, Björgvin Hjörvarsson, and Martin Sahlberg. The effect of laser scanning strategies on texture, mechanical properties, and site-specific grain orientation in selective laser melted 316L SS. Materials & Design, 193:108852, August 2020. doi: 10.1016/j.matdes.2020.108852. [13] Olivier Andreau, Imade Koutiri, Patrice Peyre, Jean-Daniel Penot, Nicolas Saintier, Etienne Pessard, Thibaut De Terris, Corinne Dupuy, and Thierry Baudin. Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting. Journal of Materials Processing Technology, 264:21–31, February 2019. doi: 10.1016/j.jmatprotec.2018.08.049.

[14] A. Leicht, C.H. Yu, V. Luzin, U. Klement, and E. Hryha. Effect of scan rotation on the microstructure development and mechanical properties of 316L parts produced by laser powder bed fusion. Materials Characterization, 163:110309, May 2020. doi: 10.1016/j.matchar.2020.110309.

[15] Xianglong Wang, Jose Alberto Muñiz-Lerma, Mohammad Attarian Shandiz, Oscar Sanchez-Mata, and Mathieu Brochu. Crystallographic-orientation-dependent tensile behaviours of stainless steel 316L fabricated by laser powder bed fusion. Materials Science and Engineering: A, 766:138395, October 2019. doi: 10.1016/j.msea.2019.138395.

[16] Deepak Kumar, Gyan Shankar, K.G. Prashanth, and Satyam Suwas. Control of texture and microstructure in additive manufacturing of stainless steel 316 L. Journal of Alloys and Compounds, 976:173040, March 2024. doi: 10.1016/j.jallcom.2023.173040.

[17] Leifeng Liu, Qingqing Ding, Yuan Zhong, Ji Zou, Jing Wu, Yu-Lung Chiu, Jixue Li, Ze Zhang, Qian Yu, and Zhijian Shen. Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Materials Today, 21(4):354–361, May 2018. doi: 10.1016/j.mattod.2017.11.004.

[18] Dayong An, Yuhao Zhou, Xinxi Liu, Haoliang Wang, Shilei Li, Yao Xiao, Rui Li, Xifeng Li, Xianhong Han, and Jun Chen. Exploring structural origins responsible for the exceptional mechanical property of additively manufactured 316L stainless steel via in-situ and comparative investigations. International Journal of Plasticity, 170:103769, November 2023. doi: 10.1016/j.ijplas.2023.103769.

[19] Y.J. Yin, J.Q. Sun, J. Guo, X.F. Kan, and D.C. Yang. Mechanism of high yield strength and yield ratio of 316 L stainless steel by additive manufacturing. Materials Science and Engineering: A, 744:773–777, January 2019. doi: 10.1016/j.msea.2018.12.092.

[20] Aliakbar Taghipour, Yousef Mazaheri, Jascha McDavid, Shahram Sheikhi, Moritz Braun, Junjun Shen, Benjamin Klusemann, and Sören Ehlers. Strengthening Mechanisms and Strain Hardening Behavior of 316L Stainless Steel Manufactured by Laser-Based Powder Bed Fusion. Advanced Engineering Materials, 25(4):2201230, February 2023. doi: 10.1002/adem.202201230.

[21] Ali Kazemi Movahed, Reza Ghanavati, Abdollah Saboori, and Luca Iuliano. A Review of Strategies for In Situ Mitigating of Residual Stress in Laser-Based Metal Additive Manufacturing: Insights, Innovations, and Challenges. Acta Metallurgica Sinica (English Letters), July 2025. doi: 10.1007/s40195-025-01902-5.

[22] Ali Tabatabaeian, Ahmad Reza Ghasemi, Mahmood M. Shokrieh, Bahareh Marzbanrad, Mohammad Baraheni, and Mohammad Fotouhi. Residual Stress in Engineering Materials: A Review. Advanced Engineering Materials, page 2100786, November 2021. doi: 10.1002/adem.202100786.

[23] Waseem Akhtar, Ismail Lazoglu, and Steven Y. Liang. Prediction and control of residual stress-based distortions in the machining of aerospace parts: A review. Journal of Manufacturing Processes, 76:106–122, 2022. ISSN 1526-6125. doi: https://doi.org/10.1016/j.jmapro.2022.02.005.

[24] Alessandro Tognan, Noel Sheshi, Emanuele Vaglio, Vladimir Luzin, Daniel Hattingh, and Enrico Salvati. Multimodal experimental and numerical evaluation of Residual Stress in AA6082-T6 Friction Stir Welding pipe girths. Journal of Materials Processing Technology, 335:118665, January 2025. doi: 10.1016/j.jmatprotec.2024.118665.

[25] Majid Laleh, Esmaeil Sadeghi, Reynier I. Revilla, Qi Chao, Nima Haghdadi, Anthony E. Hughes, Wei Xu, Iris De Graeve, Ma Qian, Ian Gibson, and Mike Y. Tan. Heat treatment for metal additive manufacturing. Progress in Materials Science, 133:101051, March 2023. doi: 10.1016/j.pmatsci.2022.101051.

[26] Wei-Jen Lai, Avinesh Ojha, Ziang Li, Carlos Engler-Pinto, and Xuming Su. Effect of residual stress on fatigue strength of 316L stainless steel produced by laser powder bed fusion process. Progress in Additive Manufacturing, 6(3):375–383, August 2021. doi: 10.1007/s40964-021-00164-8.

[27] Wen Chen, Thomas Voisin, Yin Zhang, Jean-Baptiste Forien, Christopher M. Spadaccini, David L. McDowell, Ting Zhu, and Y. Morris Wang. Microscale residual stresses in additively manufactured stainless steel. Nature Communications, 10(1):4338, September 2019. doi: 10.1038/s41467-019-12265-8.

[28] Marco Beltrami, Marco Pelegatti, Michele Magnan, Alex Lanzutti, Maxim Avdeev, Vladimir Luzin, Matteo Leoni, Francesco De Bona, and Enrico Salvati. Microstructure and residual stress evolution during cyclic elastoplastic deformation of AISI316L fabricated via laser powder bed fusion. Materials Science and Engineering: A, 898:146416, April 2024. doi: 10.1016/j.msea.2024.146416.

[29] E. Salvati and A.M. Korsunsky. An analysis of macro- and micro-scale residual stresses of Type I, II and III using FIB-DIC micro-ring-core milling and crystal plasticity FE modelling. International Journal of Plasticity, 98:123–138, November 2017. doi: 10.1016/j.ijplas.2017.07.004.

[30] Y. Morris Wang, Thomas Voisin, Joseph T. McKeown, Jianchao Ye, Nicholas P. Calta, Zan Li, Zhi Zeng, Yin Zhang, Wen Chen, Tien Tran Roehling, Ryan T. Ott, Melissa K. Santala, Philip J. Depond, Manyalibo J. Matthews, Alex V. Hamza, and Ting Zhu. Additively manufactured hierarchical stainless steels with high strength and ductility. Nature Materials, 17(1):63–71, January 2018. doi:10.1038/nmat5021.

[31] X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, M. Attarian Shandiz, N. Brodusch, R. Gauvin, and M. Brochu. Characterization of single crystalline austenitic stainless steel thin struts processed by laser powder bed fusion. Scripta Materialia, 163:51–56, April 2019. doi: 10.1016/j.scriptamat.2018.12.032.

[32] Y. Chen, Y.T. Tang, D.M. Collins, S.J. Clark, W. Ludwig, R. Rodriguez-Lamas, C. Detlefs, R.C. Reed, P.D. Lee, P.J. Withers, and C. Yildirim. High-resolution 3D strain and orientation mapping within a grain of a directed energy deposition laser additively manufactured superalloy. Scripta Materialia, 234:115579, September 2023. ISSN 13596462. doi: 10.1016/j.scriptamat.2023.115579.

[33] M Kutsal, P Bernard, G Berruyer, P K Cook, R Hino, A C Jakobsen, W Ludwig, J Ormstrup, T Roth, H Simons, K Smets, J X Sierra, J Wade, P Wattecamps, C Yildirim, H F Poulsen, and C Detlefs. The ESRF dark-field x-ray microscope at ID06. IOP Conference Series: Materials Science and Engineering, 580(1):012007, August 2019. doi: 10.1088/1757-899X/580/1/012007.

[34] H. Simons, A. King, W. Ludwig, C. Detlefs, W. Pantleon, S. Schmidt, F. Stöhr, I. Snigireva, A. Snigirev, and H. F. Poulsen. Dark-field X-ray microscopy for multiscale structural characterization. Nature Communications, 6(1):6098, January 2015. doi: 10.1038/ncomms7098.

[35] Sara J. Irvine, Kento Katagiri, Trygve M. Ræder, Ulrike Boesenberg, Darshan Chalise, Jade I. Stanton, Dayeeta Pal, Jörg Hallmann, Gabriele Ansaldi, Felix Brauße, Jon H. Eggert, Lichao Fang, Eric Folsom, Morten Haubro, Theodor S. Holstad, Anders Madsen, Johannes Möller, Martin M. Nielsen, Henning F. Poulsen, Jan-Etienne Pudell, Angel Rodriguez-Fernandez, Frank Schoofs, Frank Seiboth, Yifan Wang, Wonhyuk Jo, Mohamed Youssef, Alexey Zozulya, Kristoffer Haldrup, and Leora E. Dresselhaus-Marais. Dark-field x-ray microscopy for 2D and 3D imaging of microstructural dynamics at the European x-ray free-electron laser. Journal of Applied Physics, 137(5):053106, February 2025. doi: 10.1063/5.0239034.

[36] Sven E. Gustafson, Wolfgang Ludwig, Raquel Rodriguez-Lamas, Can Yildirim, Katherine S. Shanks, Carsten Detlefs, and Michael D. Sangid. Revealing 3D intragranular micromechanical fields at triple junctions. Acta Materialia, 260:119300, November 2023. doi: 10.1016/j.actamat.2023.119300.

[37] Can Yildirim, Henning F. Poulsen, Grethe Winther, Carsten Detlefs, Pin H. Huang, and Leora E. Dresselhaus-Marais. Extensive 3D mapping of dislocation structures in bulk aluminum. Scientific Reports, 13(1):3834, March 2023. doi: 10.1038/s41598-023-30767-w.

[38] C. Yildirim, N. Mavrikakis, P.K. Cook, R. Rodriguez-Lamas, M. Kutsal, H.F. Poulsen, and C. Detlefs. 4D microstructural evolution in a heavily deformed ferritic alloy: A new perspective in recrystallisation studies. Scripta Materialia, 214:114689, June 2022. doi: 10.1016/j.scriptamat.2022.114689.

[39] Albert Zelenika, Adam André William Cretton, Felix Frankus, Sina Borgi, Flemming B. Grumsen, Can Yildirim, Carsten Detlefs, Grethe Winther, and Henning Friis Poulsen. Observing formation and evolution of dislocation cells during plastic deformation. Scientific Reports, 15(1):8655, March 2025. doi: 10.1038/s41598-025-88262-3.

[40] H. Isern, T. Brochard, T. Dufrane, P. Brumund, E. Papillon, D. Scortani, R. Hino, C. Yildirim, R. Rodriguez Lamas, Y. Li, M. Sarkis, and C. Detlefs. The ESRF dark-field x-ray microscope at ID03. Journal of Physics: Conference Series, 3010(1):012163, May 2025. ISSN 1742-6596. doi: 10.1088/1742-6596/3010/1/012163. URL https://doi.org/10.1088/1742-6596/3010/1/012163.

[41] Marco Pelegatti, Denis Benasciutti, Francesco De Bona, Alex Lanzutti, Michele Magnan, Jelena Novak, Enrico Salvati, Francesco Sordetti, Marco Sortino, Giovanni Totis, and Emanuele Vaglio. On the factors influencing the elastoplastic cyclic response and low cycle fatigue failure of AISI 316L steel produced by laser-powder bed fusion. International Journal of Fatigue, 165:107224, December 2022. doi: 10.1016/j.ijfatigue.2022.107224.

[42] H. Payno, P. Paleo, Christian Nemoz, Alessandro Mirone, Pierre-Jean Gouttenoire, Jerome Lesaint, Wout De Nolf, and Thomas Vincent. tomwer, May 2025. [43] Jean Ollion, Julien Cochennec, François Loll, Christophe Escudé, and Thomas Boudier. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics, 29(14):1840–1841, July 2013. ISSN 1367-4811, 1367-4803. doi: 10.1093/bioinformatics/btt276.

[44] C. Detlefs, A. Henningsson, B. Kanesalingam, A. a. W. Cretton, C. Corley-Wiciak, F. T. Frankus, D. Pal, S. Irvine, S. Borgi, H. F. Poulsen, C. Yildirim, and L. E. Dresselhaus-Marais. Oblique diffraction geometry for the observation of several non-coplanar Bragg reflections under identical illumination. Journal of Applied Crystallography, 58(4):1439–1446, August 2025. ISSN 1600-5767. doi:10.1107/S1600576725005862.

[45] G. Ashiotis, A. Deschildre, Z. Nawaz, J. P. Wright, D. Karkoulis, F. E. Picca, and J. Kieffer. The fast azimuthal integration Python library: pyFAI. Journal of Applied Crystallography, 48(2):510–519, April 2015. ISSN 1600-5767. doi: 10.1107/S1600576715004306.

[46] F. Bachmann, Ralf Hielscher, and Helmut Schaeben. Texture analysis with mtex – free and open source software toolbox. In Texture and Anisotropy of Polycrystals III, volume 160 of Solid State Phenomena, pages 63–68. Trans Tech Publications Ltd, 3 2010. doi: 10.4028/www.scientific.net/SSP.160.63.

[47] J. Garriga Ferrer, R. Rodrı́guez-Lamas, H. Payno, W. De Nolf, P. Cook, V. A. Solé Jover, C. Yildirim, and C. Detlefs. darfix – data analysis for dark-field X-ray microscopy. Journal of Synchrotron Radiation, 30(3):527–537, May 2023. ISSN 1600-5775. doi: 10.1107/S1600577523001674.

[48] Bane Sullivan and Alexander Kaszynski. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Software, 4(37):1450, May 2019. doi: 10.21105/joss.01450. URL https://doi.org/10.21105/joss.01450.

[49] James Ahrens, Berk Geveci, and Charles Law. ParaView: An End-User Tool for Large-Data Visualization. In Visualization Handbook, pages 717–731. Elsevier, 2005. doi: 10.1016/B978-012387582-2/50038-1.

[50] Y. Murakami and M. Endo. Effects of defects, inclusions and inhomogeneities on fatigue strength. International Journal of Fatigue, 16(3):163–182, April 1994. ISSN 0142-1123. doi: 10.1016/0142-1123(94)90001-9.

[51] Uwe Zerbst, Giovanni Bruno, Jean-Yves Buffière, Thomas Wegener, Thomas Niendorf, Tao Wu, Xiang Zhang, Nikolai Kashaev, Giovanni Meneghetti, Nik Hrabe, Mauro Madia, Tiago Werner, Kai Hilgenberg, Martina Koukolı́ková, Radek Procházka, Jan Džugan, Benjamin Möller, Stefano Beretta, Alexander Evans, Rainer Wagener, and Kai Schnabel. Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges. Progress in Materials Science, 121:100786, August 2021. ISSN 0079-6425. doi: 10.1016/j.pmatsci.2021.100786.

[52] Niloofar Sanaei and Ali Fatemi. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Progress in Materials Science, 117:100724, April 2021. ISSN 00796425. doi: 10.1016/j.pmatsci.2020.100724.

[53] S. Romano, A. Brückner-Foit, A. Brandão, J. Gumpinger, T. Ghidini, and S. Beretta. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Engineering Fracture Mechanics, 187:165–189, January 2018. ISSN 00137944. doi:10.1016/j.engfracmech.2017.11.002.

[54] S. Romano, A. Abel, J. Gumpinger, A.D. Brandão, and S. Beretta. Quality control of AlSi10Mg produced by SLM: Metallography versus CT scans for critical defect size assessment. Additive Manufacturing, 28:394–405, August 2019. ISSN 22148604. doi: 10.1016/j.addma.2019.05.017.

[55] Yukitaka Murakami. Material defects as the basis of fatigue design. International Journal of Fatigue, 41:2–10, August 2012. ISSN 01421123. doi:10.1016/j.ijfatigue.2011.12.001. URL https://linkinghub.elsevier.com/retrieve/pii/S0142112311003161.

[56] Marco Pelegatti, Jaromı́r Brůža, Michal Jambor, Filip Šiška, and Jiřı́ Man. On microstructure evolution and damage onset in 316l steel produced by laser-powder bed fusion during the early stages of low cycle fatigue loading. Materials Characterization, 228:115448, October 2025. ISSN 1044-5803. doi: 10.1016/j.matchar.2025.115448.

[57] K. Hlushko, J. Keckes, G. Ressel, J. Pörnbacher, W. Ecker, M. Kutsal, P.K. Cook, C. Detlefs, and C. Yildirim. Dark-field X-ray microscopy reveals mosaicity and strain gradients across sub-surface TiC and TiN particles in steel matrix composites. Scripta Materialia, 187:402–406, October 2020. doi:10.1016/j.scriptamat.2020.06.053.

[58] Thomas Voisin, Jean-Baptiste Forien, Aurelien Perron, Sylvie Aubry, Nicolas Bertin, Amit Samanta, Alexander Baker, and Y. Morris Wang. New insights on cellular structures strengthening mechanisms and thermal stability of an austenitic stainless steel fabricated by laser powder-bed-fusion. Acta Materialia, 203:116476, January 2021. doi: 10.1016/j.actamat.2020.11.018.

[59] Siqi Chen, Guoqiang Ma, Guilin Wu, Andrew Godfrey, Tianlin Huang, and Xiaoxu Huang. Strengthening mechanisms in selective laser melted 316L stainless steel. Materials Science and Engineering: A, 832:142434, January 2022. doi: 10.1016/j.msea.2021.142434.

[60] Can Yildirim, Aditya Shukla, Yubin Zhang, Nikolas Mavrikakis, Louis Lesage, Virginia Sanna, Marilyn Sarkis, Yaozhu Li, Michela La Bella, Carsten Detlefs, and Henning Friis Poulsen. 3D/4D imaging of complex and deformed microstructures with pink-beam dark field X-ray microscopy. Communications Materials, 6(1):198, August 2025. doi: 10.1038/s43246-025-00926-9.

[61] Michael Salvini, Nicolò Grilli, Eralp Demir, Siqi He, Tomas Martin, Peter Flewitt, Mahmoud Mostafavi, Christopher Truman, and David Knowles. Effect of grain boundary misorientation and carbide precipitation on damage initiation: A coupled crystal plasticity and phase field damage study. International Journal of Plasticity, 172:103854, January 2024. doi: 10.1016/j.ijplas.2023.103854.

[62] Ritwik Bandyopadhyay, Sven E. Gustafson, Kartik Kapoor, Diwakar Naragani, Darren C. Pagan, and Michael D. Sangid. Comparative assessment of backstress models using high-energy X-ray diffraction microscopy experiments and crystal plasticity finite element simulations. International Journal of Plasticity, 136:102887, January 2021. doi: 10.1016/j.ijplas.2020.102887.

[63] Anxin Ma and Alexander Hartmaier. On the influence of isotropic and kinematic hardening caused by strain gradients on the deformation behaviour of polycrystals. Philosophical Magazine, 94(2):125–140, 2014. doi: 10.1080/14786435.2013.847290.

[64] F. P. E. Dunne, R. Kiwanuka, and A. J. Wilkinson. Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2145):2509–2531, September 2012. doi:10.1098/rspa.2012.0050.

[65] Yaozhong Zhang, James Ball, Axel Henningsson, Jon Wright, Lucero Lopez, Dillon Jobes, Henry Proudhon, and Jerard V. Gordon. Unveiling 3D sub-grain residual stresses in as-built additively manufactured steel using scanning 3DXRD. Materials Research Letters, 13(7):700–708, July 2025. ISSN 2166-3831. doi: 10.1080/21663831.2025.2502502.

[66] A Ciampaglia, A. Tridello, D. S. Paolino, and F. Berto. Data driven method for predicting the effect of process parameters on the fatigue response of additive manufactured AlSi10Mg parts. International Journal of Fatigue, 170:107500, May 2023. ISSN 0142-1123. doi: 10.1016/j.ijfatigue.2023.107500.

[67] Lanyi Wang, Shun-Peng Zhu, Changqi Luo, Ding Liao, and Qingyuan Wang. Physics-guided machine learning frameworks for fatigue life prediction of AM materials. International Journal of Fatigue, page 107658, March 2023. ISSN 01421123. doi: 10.1016/j.ijfatigue.2023.107658.

Downloads

Posted

17-01-2026